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Abstract

We estimate time-varying disaster risk using interbank rates and their options. The identifi-

cation of disaster risk has remained a significant challenge due to the rarity of macroeconomic

disasters. We make an identification assumption that macroeconomic disasters coincide with

banking disasters – extremely unlikely events in which the interbank market fails and investors

suffer significant losses. Based on our flexible reduced-form setup, interbank rates together with

their options allow us to extract the short-run and long-run components of disaster risk. Our

estimation results serve as an external validity test of rare disaster models, which are typically

calibrated to match stock moments.
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1 Introduction

As an explanation for puzzles in macro-finance, the rare disaster literature has received

ample attention (for a comprehensive review, see Tsai and Wachter, 2015). The fundamental

notion behind rare disasters is to put more weight on events that are extremely bad, albeit

unlikely. Rietz (1988) and Barro (2006) introduce and formalize the rare disaster mechanism

to explain the equity premium puzzle. More recently, Gabaix (2012), Gourio (2012), and

Wachter (2013) incorporate the time variation in the probability or severity of disasters to

account for puzzles related to volatility and return predictability.

However, rare disaster models have also received their fair share of criticism. For example,

rare disasters are often referred to as “dark matter” because of the rarity of their observations

and the obscurity of their source.1 These criticisms point to the fact that it is difficult to

reliably estimate the parameters associated with disasters. In line with this, Chen, Dou,

and Kogan (2019) raise concerns with regard to overfitting in-sample data: if a disaster

model excessively overfits in-sample data, then the model implication would be sensitive to

small perturbations of disaster parameters. Estimating time-varying disaster risk is even

more challenging. Cochrane (2017) considers time-varying probabilities of disasters as “dark

energy” unless there is a way to independently anchor them to an external data source.

In this paper, we address these issues by estimating the time variation in disaster risk

using interbank rates and their options. First, we define banking disasters as extremely

unlikely events in which the interbank market among major banks collapses, resulting in

substantial losses for market participants. Then, we capture the risk of consumption disasters

by that of banking disasters, assuming that the two types of events coincide. The connection

between the two has been empirically supported; for example, Reinhart and Rogoff (2013)

1In order to describe an extreme and rare economic downturn, the literature defines macroeconomic
disasters as an severe drop in real consumption per capita (e.g. Barro, 2006; Barro and Ursúa, 2008; Gabaix,
2012; Wachter, 2013) or as a significant reduction in total factor productivity (e.g. Gourio, 2012).
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point out that virtually all consumption disasters documented by Barro and Ursúa (2008)

were accompanied by severe systemic banking crises.2

Intuitively, this assumption provides a direct link between disaster risk and the interbank

market. Hence, based on interbank rates and their options, it is possible to estimate the

dynamics of time-varying disaster risk, with the aid of a model. Specifically, we adopt a

flexible reduced-form setup where the nominal pricing kernel is comprised of Brownian and

Poisson shocks to the four state variables of the economy: (1) real consumption growth, (2)

expected inflation, (3) short-run disaster risk, and (4) long-run disaster risk. Under our affine

framework where the instantaneous nominal risk-free rate is modeled as a linear function of

the state variables, we derive the model expressions for the interbank rate and the Treasury

rate for each maturity. We, then, show that their gap (the so-called TED spread) is highly

informative about disaster risk, as it only depends on the two disaster-related state variables.

In addition to the TED spread, we take advantage of interest rate caps and swaptions,

which are essentially option contracts on future interbank rates. A cap consists of a series

of caplets, each of which can be viewed as a call option on the LIBOR. A swaption provides

its holder the right to enter into an interest rate swap that exchanges floating coupons

based on the LIBOR with fixed coupons based on the strike interest rate. With slight

approximations, we express the prices of caps and swaptions in closed form up to ordinary

differential equations using the transform method of Duffie, Pan, and Singleton (2000).

We estimate the model parameters via maximum likelihood estimation using the data

from January 1997 to December 2017. As a result, we obtain parameter estimates whose signs

and magnitudes are economically sensible. The model-implied time series for interest rates,

2The general idea of linking macroeconomic crises and banking crises has been well established in the
literature. Bernanke (1983) argues that the failure of a substantial fraction of U.S. banks was the primary
reason behind the Great Depression. Moreover, Allen, Bali, and Tang (2012) and Giesecke, Longstaff,
Schaefer, and Strebulaev (2014) empirically compare the risk of financial sector defaults with that of non-
financial corporate defaults and find that the former influences macroeconomic downturns, whereas the latter
does not.
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caps, and swaptions mimic their data counterparts reasonably well. Note that our utmost

focus is on the model parameters that are associated with disaster risk: the unconditional

disaster intensity is estimated to be 2.39%, implying 2.39 disasters per century on average.

Overall, our results provide additional guidelines that can help discipline the calibration of

rare disaster models.

An important advantage of our estimation is that it is possible to extract the short-run

and long-run components of latent disaster risk through a filtering approach. Specifically, we

adopt the extended Kalman filter because caps and swaption prices are nonlinear functions

of the latent and observable state variables. From a sensitivity analysis, we discover that

the short-run component of disaster risk is mainly identified by the TED spread with a

short maturity. In contrast, the long-run component of disaster risk is primarily filtered out

through caps and swaptions whose payoffs are contingent on future interbank rates over a

long horizon. Importantly, the forward-looking information from interest rate options plays

a crucial role in estimating not only the level but also the whole dynamics of disaster risk.

This paper’s results emphasize that the interbank market can potentially be useful for

overcoming the criticisms of rare disaster models, which are typically calibrated to match

stock data. Our estimation is independent of equity market moments and, thus, serves as an

external validity test of the models. The parameter estimates suggest that disaster risk is

significant in magnitude and in variation, strongly supporting macro-finance models with the

rare disaster mechanism. In addition, based on the filtered time series of the short-run and

long-run components of disaster risk, we verify the testable implications that disaster risk

should be associated with various conditional moments and returns in the equity market.

All in all, our findings corroborate the disaster-based explanation of various asset pricing

puzzles.

We contribute to the rare disaster literature by estimating the time-varying risk of eco-
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nomic disasters. Granted, we are not the first to attempt to quantify the time series variation

in disaster risk. For example, Berkman, Jacobsen, and Lee (2011) proxy the perceived disas-

ter probability by a crisis severity index, constructed based on the number of international

political crises. Manela and Moreira (2017) create a text-based disaster concern measure,

called news implied volatility (NVIX), using the words in front-page articles of the Wall Street

Journal. Rather than proposing another index that potentially correlates with disaster risk,

our goal is to directly estimate the risk of consumption disasters under the identification

assumption that consumption disasters coincide with banking disasters. A key advantage

of our framework is that it is possible to exploit the information contained in interbank

rates and their options, which allows us to separately extract the short-run and long-run

components of disaster risk.

Our estimation relies on the pricing data on interest caps and swaptions. Prior studies,

including Longstaff, Santa-Clara, and Schwartz (2001), Han (2007), and Trolle and Schwartz

(2009), mainly concentrate on the relative pricing of caps and swaptions. However, the liter-

ature has paid little attention to what these financial instruments imply about the aggregate

economy or other financial markets. We explore the economic content of caps and swap-

tions by focusing on the fact that their payoffs are contingent on future interbank rates. We

confirm that interbank rate options indeed contain valuable information about the risk of

banking disasters.

Our paper relates to the literature on understanding the source of interbank risk. Michaud

and Upper (2008), Taylor and Williams (2009), Filipović and Trolle (2013), and McAndrews,

Sarkar, and Wang (2017) decompose interbank risk into a pure credit component and a

liquidity component to examine how they distinctively affect interbank risk. In contrast, we

do not make such a distinction. We study the possibility of extreme tail events implied by

the total risk of the interbank market, regardless of whether it originates from bank-specific
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default risk or systemic liquidity risk.

The findings of this paper also potentially relate to the growing literature on the role of

financial intermediaries in asset pricing. He and Krishnamurthy (2013) and Brunnermeier

and Sannikov (2014) argue that intermediaries, rather than households, act as marginal

investors and, therefore, their financial constraints are key drivers of market risk premia.

Adrian, Etula, and Muir (2014) and He, Kelly, and Manela (2017) empirically support the

theory by showing that intermediary-induced factors outperform traditional risk factors in

explaining asset returns in various markets. Although our analysis mainly concerns economic

disasters, the reduced-form pricing kernel we adopt has properties that are isomorphic to

those of an intermediary-based pricing kernel: when the interbank market is hit by a shock

(which is modeled as a shock to the risk of banking disasters in our framework), the pric-

ing kernel responds and generates risk premia. Our results hint that the disaster-based

explanation and the intermediary-based explanation of asset markets might share common

microfoundations.

The rest of this paper proceeds as follows. Section 2 describes the model and Section

3 describes the data. Section 4 explains how we estimate the model and extract time-

varying disaster risk. Section 5 reports the estimation results and discusses their implications.

Section 6 concludes.

2 Model

2.1 The Risk of Banking Disasters and the TED Spread

We define banking disasters as extremely unlikely events in which the interbank market

fails and market participants suffer significant losses. In this paper, we do not model the

behaviors of banks nor the structure of the interbank market, which can potentially generate
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banking disasters in an endogenous fashion. Instead, we simply specify the occurrence of

banking disasters using a Poisson process Nt, as our focus is on empirically characterizing

time-varying disaster risk. Following Seo and Wachter (2018), we assume that the Poisson

process has stochastic intensity λt whose dynamics are described by

dλt = κλ(ξt − λt)dt+ σλ
√
λtdBλ,t,

dξt = κξ(ξ̄ − ξt)dt+ σξ
√
ξtdBξ,t,

where ξt is the time-varying mean of instantaneous disaster risk λt. Simply put, λt and ξt

represent the short-run and long-run components of disaster risk, respectively.

Let Lt denote the time-t face value of interbank lending. In the event of a banking

disaster, this face value, or the expected principal payment, significantly reduces, whereas

it remains constant otherwise. By defining ZL,t < 0 as a random variable that captures the

size of banking disasters, it follows that

Lt =

 eZL,tLt− if a banking disaster occurs at time t,

Lt− otherwise,

or, equivalently,

dLt
Lt−

=
(
eZL,t − 1

)
dNt.

Under this simple setup, it is intuitive that the TED spread, the difference between the 3-

month interbank rate and the 3-month Treasury rate, contains important information about

disaster risk. To illustrate, we compare the expressions for interbank rates and Treasury

rates. The pricing relation implies that the τ -maturity zero-coupon interbank rate can be

derived as:

y
(τ)
i,t = −1

τ
logEt

[
Mt+τ

Mt

· Lt+τ
Lt

]
, (1)
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where
[
Mt+τ

Mt

]
represents the nominal pricing kernel whose existence is guaranteed under no

arbitrage. While interbank lending contracts are potentially subject to partial defaults, nom-

inal government bonds always pay back the promised amount at the end of their maturity.

The τ -maturity zero-coupon government bond yield (or simply, Treasury rate) is calculated

as:

y
(τ)
g,t = −1

τ
logEt

[
Mt+τ

Mt

· 1
]
. (2)

Comparing equations (1) and (2) suggests that changes in disaster risk have a direct effect

on the TED spread, defined as
[
y

(0.25)
i,t − y(0.25)

g,t

]
. When disaster risk rises, the expectation

of the future payoff
[
Lt+τ
Lt

]
decreases, which pushes interbank rates upward. However, this

effect is missing for Treasury rates as the future payoff from default-free government bonds

is always 1. As a result, the TED spread widens when disaster risk increases.

These equations also suggest that fluctuations in disaster risk or in other potential risk

factors can have indirect effects on interbank rates and Treasury rates through the pricing

kernel. However, if risk factors only impact the pricing kernel but not the future payoff[
Lt+τ
Lt

]
, they will move interbank rates with the same degree as Treasury rates, leaving

the TED spread unchanged. Since the distribution
[
Lt+τ
Lt

]
only depends on λt and ξt, this

suggests that risk factors that are orthogonal to λt and ξt will have no impact on the TED

spread. Below, we show in our fairly flexible setup that the TED spread only depends on

instantaneous disaster risk λt and its time-varying mean ξt, confirming this intuition.

2.2 Interbank Rates and Treasury Rates

Equations (1) and (2) make it clear that we need a nominal pricing kernel
[
Mt+τ

Mt

]
to derive the

specific expressions for zero-coupon yields on interbank lending and on government bonds.

Our pricing kernel is reduced-form in the sense that we exogenously specify its dynamics.

Whereas the pricing kernel in an equilibrium model is typically pinned down by the interplay
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between investors’ preferences and endowment processes, the pricing kernel in our setup is

written in a general form so that it can be directly estimated using data.

Before we specify the pricing kernel, we establish the state variables in the economy. In

addition to the two factors that concern variable disaster risk (λt and ξt), we take two more

variables that are typically used to capture the state of the economy: real consumption and

expected inflation. First of all, we assume that real consumption follows an affine jump

diffusion process,

dct
ct−

= µcdt+ σcdBc,t +
(
eZc,t − 1

)
dNt, (3)

where Bc,t is a standard Brownian motion. Equation (3) implies that when a banking disaster

occurs (dNt = 1), log consumption drops by Zc,t. It is worth mentioning that we are agnostic

about how banking disasters lead to macroeconomic disasters or vice versa. For our empirical

analyses, it suffices that these two types of extreme events are associated with each other,

as evidenced by Reinhart and Rogoff (2013). Consistent with the rare disaster literature, we

assume that Zc,t = ZL,t < 0 follows the empirical distribution of Barro and Ursúa (2008).

We plot this distribution in Panel A of Figure 1.

We also choose expected inflation as a relevant state variable following the interest rate

term structure literature. We assume that the expected inflation process qt solves the stochas-

tic differential equation:

dqt = κq(q̄ − qt)dt+ σqdBq,t + Zq,tdNt, (4)

where Bq,t is a standard Brownian motion. As highlighted in Tsai (2015), it is necessary

for macroeconomic disasters to coincide with positive jumps in expected inflation in order

to generate an upward-sloping term structure of nominal interest rates. For parsimony, we
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capture this commonality by assuming that qt is also subject to the same Poisson process

Nt and that the jump size random variable Zq,t is, on average, positive. Specifically, we

construct the empirical distribution of Zq,t by compiling inflation rates during consumption

disasters.3 We present this distribution in Panel B of Figure 1.

We assume that Brownian shocks (dBc,t, dBλ,t, dBξ,t, dBq,t) are independent of one

another and of a Poisson shock (dNt). These five independent shocks to the four state

variables constitute the shocks to the nominal pricing kernel:

dMt

Mt−
= −rtdt+ θcdBc,t + θλ

√
λtdBλ,t + θξ

√
ξtdBξ,t + θqdBq,t

+
[ (
eθNZc,t − 1

)
dNt − λtE

[
eθNZc,t − 1

]
dt
]
, (5)

where rt represents the instantaneous nominal risk-free rate. To preserve the affine structure

of our setup, we represent rt as a linear function of the state variables, similar to Ang and

Piazzesi (2003), and Joslin, Le, and Singleton (2013):

rt = δ0 + δλλt + δξξt + δqqt. (6)

Note that the pricing kernel fully characterizes the risk-neutral measure, as the Radon-

Nikodym derivative process of the risk-neutral measure with respect to the physical measure

equals
[
Mt

∫ t
0
rsds

]
. In Appendix A.1, we derive the risk-neutral dynamics of the underlying

processes using Girsanov’s theorem.

Based on the pricing kernel specified above, we finally calculate the expressions for y
(τ)
i,t

and y
(τ)
g,t in equations (1) and (2). We show that both interbank rates and Treasury rates are

3The Barro-Ursua dataset contains a few extreme hyperinflation events, such as the hyperinflation of
Weimar Germany in the 1920s where the inflation rate exceeded 3,000%. Given that the number of historical
consumption disasters is only 89, such extreme outliers completely dominate the moment generating function
of Zq,t. Thus, we exclude the observations that fall more than 3 times the interquartile range above the
third quartile. No observations fall more than 3 times the interquartile range below the first quartile.
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linear in state variables λt, ξt, and qt:

y
(τ)
i,t = −1

τ

[
ai(τ) + bi,λ(τ)λt + bi,ξ(τ)ξt + bq(τ)qt

]
, (7)

y
(τ)
g,t = −1

τ

[
ag(τ) + bg,λ(τ)λt + bg,ξ(τ)ξt + bq(τ)qt

]
, (8)

where deterministic functions ai, ag, bi,λ, bg,λ, bi,ξ, bg,ξ, and bq solve the ordinary differential

equations derived in Appendix A.2.

One notable aspect when comparing equations (7) and (8) is that the loading on expected

inflation qt is identical for both types of interest rates. Therefore, for each maturity τ , the

difference between the interbank rate and the Treasury rate becomes a function of disaster

risk (λt and ξt) alone, confirming the intuition from Section 2.1 that the TED spread is

only sensitive to disaster risk. Although the TED spread typically refers to the gap in the

3-month yields, we expand its definition for an arbitrary τ and refer to it as the τ -maturity

TED spread hereafter:

TED
(τ)
t = −1

τ

[ (
ai(τ)− ag(τ)

)
+
(
bi,λ(τ)− bg,λ(τ)

)
λt +

(
bi,ξ(τ)− bg,ξ(τ)

)
ξt

]
. (9)

2.3 Options on Interbank Rates

In this section, we introduce derivative contracts called caps and swaptions whose payoffs

depend on future interbank rates. When discussing their payoffs and pricing, it is convenient

to introduce the following notation:

Pi(t, t+ τ) = exp
(
−τ · y(τ)

i,t

)
. (10)

In other words, Pi(t, t + τ) represents the time-t value of $1 zero-coupon interbank lending

maturing at time t+ τ .
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In addition, we need the expression for the 6-month LIBOR in the model. Recall that

the 6-month LIBOR is a simple interest rate and, therefore, is not exactly the same as the

continuously compounded rate y
(0.5)
i,t . In fact, the 6-month LIBOR rate is expressed as:

LIBORt = 2
[

exp
(
τ · y(τ)

i,t

)
− 1
]

= 2

(
1

Pi(t, t+ 0.5)
− 1

)
. (11)

An interest rate cap consists of a series of caplets that mature every 6 months.4 Specif-

ically, the first caplet matures 6 months from today, and the last caplet matures 6 months

prior to the cap maturity date. Let T denote the time to maturity of a cap from today (time

t), and Kc denote its strike interest rate. For notational convenience, we define ∆ = 0.5 and

tj = t+ ∆j.

The j-th caplet provides the holder of the cap with the right, not the obligation, to

borrow a dollar at the rate of Kc between times tj and tj+1. If the future 6-month LIBOR

at time tj is higher than the strike Kc, this caplet is exercised and the holder borrows a

dollar at the lower-than-the-fair interest rate. That is, the payoff from exercising the caplet

is ∆ ×
(
LIBORtj −Kc

)
. This payoff occurs at time tj+1 because the interest payment is

made at the end of the borrowing period.

Since the cap is a collection of a mT =
(
T
∆
− 1
)

number of caplets, the time-t cap value

is calculated as:

V (T )
cap (t,Kc) =

mT∑
j=1

EQt

[
exp

(
−
∫ tj+1

t

rsds

)[
∆×

(
LIBORtj −Kc

)]+
]
, (12)

where Q represents the risk-neutral measure (see Appendix A.1).5 In Appendix A.3, we

4More precisely, a conventional cap contract traded in the market is a collection of caplets that mature
every 3 months. As documented by Longstaff, Santa-Clara, and Schwartz (2001), assuming semi-annually
spaced caplets for computational convenience is innocuous, generating a negligible difference when it comes
to Black-implied volatilities.

5We can obtain the same result if we multiply the cap payoff by the pricing kernel and take the expectation
under the physical measure. Following the convention in the literature on interest rate derivatives, we use
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demonstrate that equation (12) can be computed using the transform analysis of Duffie,

Pan, and Singleton (2000).

An interest rate swaption grants the holder the right, not the obligation, to enter into

an interest rate swap (IRS). There are two types of swaptions. When exercised, a payer

swaption delivers an IRS where the holder pays the fixed leg and receives the floating leg (a

payer IRS); a receiver swaption delivers an IRS where the holder receives the fixed leg and

pays the floating leg (a receiver IRS). We now define T as the time to maturity of payer and

receiver swaptions. Let Ks denote their strike interest rate. The tenor of the IRS at the

maturity of the swaptions is denoted as T̄ . Under this notation, our swaptions of interest

are often referred to as T -into-T̄ swaptions.

The payer swaption is exercised if the future T̄ -maturity swap rate at time t+T is larger

than the strike Ks. In this case, the holder enters into a payer IRS contract and makes

a profit by exchanging the fixed rate Ks (which is lower than the fair swap rate) for the

floating rate. The profit, or the value of this payer IRS at time t+T , is simply the difference

between its floating leg and its fixed leg. The floating leg is always 1 because it is equivalent

to the value of a floating rate note whose coupons reset periodically. In contrast, the fixed

leg is equivalent to the value of a dollar notional coupon bond with the (annualized) coupon

rate of Ks:

V
(T̄ )

fixed(t+ T,Ks) = ∆

Ks

T̄ /∆∑
j=1

Pi (t+ T, t+ T + j∆)

+ Pi(t+ T, t+ T + T̄ ). (13)

Therefore, the time-t payer swaption value is expressed as:

V (T,T̄ )
pay (t,Ks) = EQt

[
exp

(
−
∫ t+T

t

rsds

)[
1− V (T̄ )

fixed(t+ T,Ks)

]+
]
. (14)

the pricing relation under the risk-neutral measure.
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Similarly, the receiver swaption is exercised if the future T̄ -maturity swap rate at time t+T

is smaller than the strike Ks. The time-t receiver swaption value is expressed as:

V (T,T̄ )
rcv (t,Ks) = EQt

[
exp

(
−
∫ t+T

t

rsds

)[
V

(T̄ )
fixed(t+ T,Ks)− 1

]+
]
. (15)

These equations suggest that interest rate swaptions can essentially be viewed as options

on a coupon bond. Due to coupon payments, the expression for the coupon bond price

contains multiple terms, which makes it impossible to calculate the expectations in equa-

tions (14) and (15) using the semi-analytic approach of Duffie, Pan, and Singleton (2000). To

make the computation tractable, we adopt the so-called stochastic duration method imple-

mented by Trolle and Schwartz (2009). This method enables us to accurately approximate

the price of a coupon bond option by a constant multiplication of the price of a zero-coupon

bond option (see, e.g., Wei, 1997; Munk, 1999). We provide a detailed description of the

swaption pricing procedure in Appendix A.3.

3 Data

Our data sample consists of the following variables: Black-implied volatilities for caps and

swaptions, interbank rates, Treasury rates, expected inflation, and real consumption per

capita. All variables are sampled at a monthly frequency at the end of each month, from

January 1997 to December 2017.

We download the pricing data on caps and swaptions from Bloomberg.6 Caps and swap-

tions are typically quoted in terms of Black-implied volatilities. For each market price, the

corresponding Black-implied volatility is found by backsolving the volatility term in the

6There are multiple sources for caps and swaptions data on Bloomberg. We mainly use the source “BBIR,”
which provides the Black-implied volatilities calculated based on LIBOR-swap curves. Since this data source
provides the time series from April 2002, we complement it by adding the data from the source “CMPN”
for the period between January 1997 and March 2002.
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Black (1976) model.

Caps and swaptions in our sample are at-the-money forward (ATMF), meaning that the

strike price of each option is equal to the current forward price of the underlying. Specifically,

the strike price of a T -maturity ATMF cap is the T -maturity swap rate. The strike price

of a T -into-T̄ ATMF swaption is the forward swap rate between the option expiry (T years

from today) and the underlying swap expiry (T + T̄ years from today).

Interbank rates consist of 3-, 6-, and 12-month LIBOR rates as well as 2-, 3-, 5-, 7-,

and 10-year swap rates, all of which are downloaded from Bloomberg. We also collect the

Treasury rates with the same maturities from the Federal Reserve Bank of St. Louis. To

make the data comparable with the model-implied interest rates, we need to convert the

two types of interest rate term structures into continuously compounded zero curves. To do

so, we adopt a procedure that is similar to Trolle and Schwartz (2009): we first transform

raw interest rates into their corresponding par rates. Then, we use linear interpolation

to construct par curves with maturities ranging from 6 months to 10 years with 6-month

intervals. From these interpolated par curves, we extract smooth forward rate curves and,

in turn, zero-coupon yield curves via the Nelson and Siegel (1987) parameterization.

The data on expected inflation is obtained from the Blue Chip Economic Indicators

survey. This dataset provides the forecasts of inflation for the current calendar year and for

the next calendar year. For each month, we calculate a proxy for the 1-year ahead expected

inflation by calculating the weighted average between the two forecasts. Lastly, the monthly

time series of real consumption per capita is from the Federal Reserve Bank of St. Louis.

4 Estimation Procedure

Estimating our model is computationally challenging. In each iteration of the MLE pro-

cedure, we need to evaluate the log-likelihood function. Due to cap/swaption pricing, this
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requires numerically solving the system of complex-valued ordinary differential equations of

Duffie, Pan, and Singleton (2000) several times. Furthermore, we have a large number of

parameters to be estimated: 18 model parameters together with three additional parameters

concerning measurement errors (described below). As a result, estimating all of these param-

eters at once in a single maximum likelihood estimation (MLE) is highly time-consuming.

To alleviate the computational burden, we first separately estimate the parameters µc,

σc, κq, q̄, and σq, which govern the normal-time dynamics of real consumption and expected

inflation. This is possible because a consumption/banking disaster was absent during our

sample period, implying that the observed time series of real consumption and expected

inflation were completely driven by these five parameters. Specifically, µc and σc are esti-

mated by maximizing the log-likelihood of the real consumption time series, conditional on

no disasters. Similarly, κq, q̄, and σq are estimated from the expected inflation time series

via MLE.

We further reduce the dimension of our parameter space by putting a restriction on the

value of δ0. Taking expectations on both sides of equation (6) results in:

E[r] = δ0 + δλE[λ] + δξE[ξ] + δqE[q].

Here, we proxy the unconditional mean of the short rate (E[r]) by the average 1-month

risk-free rate (Ê[r]) from the CRSP dataset. Then, the value of δ0 can be obtained as:

δ0 = Ê[r]− δλξ̄ − δξ ξ̄ − δqÊ[q],

where Ê[q] is the average expected inflation during our sample period.

The remaining 15 parameters are now estimated within the main MLE procedure. We

construct the likelihood function L under the assumption that we observe the following: (i)
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3-, 6-, 12-month TED spreads, (ii) interbank rates and Treasury rates with 3-, 6-, 12-month,

2-, 3-, 5-, 7-, 10-year maturities, (iii) 2-, 3-, 4-, 5-, 7-, 10-year cap implied volatilities, and

(iv) 1-into-4, 2-into-3, 3-into-2, 4-into-1, 3-into-7, 5-into-5 swaption implied volatilities. For

notational simplicity, we let Yt denote the vector of all these observations at time t.

To obtain the likelihood function L, it suffices to derive the transition density of Yt.

Specifically, we define Lt as the likelihood of observing Yt conditional on Yt−∆t:

Lt = P (Yt|Yt−∆t) ,

where ∆t = 1/12 represents monthly time intervals between observations. Not only does

this transition density depend on the observable state variable qt, but it also relies on the

two latent variables λt and ξt.

In order to solve this filtering problem, we specify the state equation and the measurement

equation in the state-space representation of our model. The state equation describes the

dynamics of a latent state vector St = [λt, ξt]
>. There are two ways to map the continuous-

time dynamics of St into the discrete-time state equation. The first approach applies the

Euler discretization to λt and ξt, and then finds the discrete-time relation between St and

St−∆t. In contrast, the second approach finds the exact relation between St and St−∆t without

any approximation, and then discretizes the resulting relation. We adopt the latter approach

following Chen and Scott (2003), as it better captures the square-root diffusions of the two

latent processes. Consequently, we obtain the following linear state equation:

St = η + ΨSt−∆t + εt, where Et−∆t

[
εtε
>
t

]
= Ωt−∆t. (16)

We provide the expressions for two-dimensional vector η, 2 × 2 matrix Ψ, and 2 × 2 time-

varying covariance matrix Ω in Appendix B. Since εt is non-normal, we approximate it by
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a normal distribution with the same covariance matrix. Prior studies document that this

assumption is innocuous.7

Now, we turn to the measurement equation. We assume that Yt is observed with a vector

of measurement errors et:

Yt = h(St, qt) + et, where Et−∆t

[
ete
>
t

]
= Q. (17)

Note that h(·) is a vector-valued function of the state variables that generate the model

counterparts of the data. The mean-zero random vector et is normally distributed with

covariance matrix Q. For parsimony, we assume that Q is determined by the following

three parameters: the standard deviation of the measurement errors for TED spreads (σSP ),

the one for interest rates (σITR), and the one for Black-implied volatilities (σOPT ). All

measurement errors are iid and are independent of one another.

The measurement equation clearly suggests that the linear Kalman filter cannot be used

in our estimation. This is because h is not a linear function: cap/swaption prices as well

as their Black-implied volatilities are nonlinear in the state variables. Therefore, we apply

the extended Kalman filter, in which h is locally linearized at each set of predicted values of

the state variables. In Appendix B, we provide a detailed description of how the extended

Kalman filter is implemented under our setup.

In each iteration of the MLE procedure, we obtain not only the time series of the estimated

latent variables
{
λ̂t, ξ̂t

}
, but also the time series of the transition densities {Lt} through

this filtering process. Let {tk}nk=1 denote monthly-spaced points in time when the data time

series are observed. Then, the log-likelihood function for the entire observations can finally

7See, for example, Duan and Simonato (1999), Duffee (1999), Chen and Scott (2003), Trolle and Schwartz
(2009), and Filipović and Trolle (2013).
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be expressed as:

logL =
n∑
k=1

logLtk . (18)

We obtain our parameter estimates by maximizing this log-likelihood function.8

5 Results

5.1 Parameter Estimates

Table 1 reports the values of our model parameters estimated through the MLE procedure,

together with their robust standard errors in parentheses.9 First of all, we can observe

that the parameter values for consumption growth and expected inflation are economically

sensible. During normal periods without disasters, consumption growth has a mean (µc) of

1.38% and a standard deviation (σc) of 0.81%, exactly consistent with the first two moments

of the observed consumption time series in our sample. The parameter values for expected

inflation are also in line with the corresponding data time series: the long-run mean (q̄) is

about 2%, the conditional volatility (σq) is 0.62%, and the monthly autocorrelation (1−κq∆t)

is approximately 0.96.

Our main focus is on the model parameters that are associated with the dynamics of

disaster risk. Table 1 shows that the unconditional disaster intensity (i.e. E[λ] = E[ξ] = ξ̄)

is estimated to be 2.39%, which indicates that investors expect, on average, 2.39 disasters

per century. For comparison, note that Barro and Ursúa (2008) calibrate the frequency of

economic disasters as 3.64% based on the long-term panel of international consumption time

8For robustness, we also run the penalized MLE by adopting the fragility measure of Chen, Dou, and
Kogan (2019) as a penalty function. The fragility measure captures how much our estimated model overfits
in-sample data relative to the baseline case, in which the model is estimated only based on interest rates
without interbank options. While the penalized MLE slightly changes the point estimates of the model
parameters, we find that the overall implications of the model remain intact.

9As described in Section 4, the parameter δ0 is uniquely determined by other parameters and, hence, its
standard error is not calculated.
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series. There are two key differences between our approach and theirs. First, instead of

relying on past consumption time series, we estimate the unconditional disaster likelihood

from the pricing data on interbank rates and related options. Given the extremely infrequent

nature of disasters, the frequency can be more robustly estimated by exploiting forward-

looking information from asset prices. Second, unlike Barro and Ursúa (2008), our estimation

is only based on U.S. data. Therefore, it is possible to interpret our parameter estimate as

a U.S.-specific quantity. In fact, our estimate (i.e. 2.39%) is lower compared to what Barro

and Ursúa (2008) report (i.e. 3.64%), presumably reflecting that the U.S. is relatively more

stable than the global average.

In our model, disaster risk has a two-factor structure with λt and ξt. While both pro-

cesses are estimated to be highly persistent with low mean reversion speed (κλ and κξ),

λt is relatively less persistent than ξt. This is intuitive because λt captures the short-run

component of disaster risk, whereas ξt captures the long-run component. Consistent with

this interpretation, λt exhibits a higher conditional volatility than ξt (i.e. σλ > σξ). Overall,

our results reveal that the estimated dynamics of disaster risk is fairly consistent with the

calibration of Seo and Wachter (2018), who adopt the same two-factor disaster risk structure.

In Section 5.3, we further characterize the time variation in disaster risk by examining the

filtered time series of λt and ξt.

The estimated coefficients δλ, δξ, and δq in Table 1 show how the three state variables

λt, ξt, and qt affect the nominal risk-free rate in our estimated model. We observe that the

factor loadings on λt and ξt are negative. This is in accordance with the intuition behind the

precautionary savings motive. When disaster risk rises, investors are inclined to save more to

secure against future uncertainty, and this drives down the real risk-free rate in equilibrium.

In contrast, the factor loading on expected inflation is positive. This can be explained by

the so-called Fisher effect: the nominal risk-free rate is approximately the real risk-free rate
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plus the expected inflation rate. Indeed, the magnitude of δq is close to 1, implying that

an 1% increase in expected inflation leads to a roughly 1% increase in the nominal risk-free

rate.

Additionally reported are the market prices of risk. We find that the signs of these four

coefficients are reasonable. The market prices of diffusive risk (θλ, θξ, and θq) are positive.10

This suggests that the pricing kernel or investors’ marginal utility rises when a positive

Brownian shock (dBλ,t, dBξ,t, or dBq,t) is realized. In contrast, the market price of jump risk

(θN) is negative. This indicates that eθNZc,t is larger than 1, which subsequently implies that

the pricing kernel goes up when a disaster occurs (dNt = 1). All in all, we conclude that the

signs and magnitudes of the model parameters from our estimation well comply with general

economic intuition.

5.2 Implications for Interest Rates, Caps, and Swaptions

We now investigate whether our estimated model is capable of producing a reasonable fit to

the market data on interest rates, caps, and swaptions. We first examine short-term interest

rates by plotting the time series of the Treasury rate (Panel A), the interbank rate (Panel

B), and the TED spread (Panel C) with a 3-month maturity in the data (solid blue line) and

in the model (dashed red line). All interest rates are expressed as continuously compounded

rates. As described in Section 2.2, the TED spread is also calculated as the difference between

the interbank rate and the Treasury rate, both with continuous compounding.

Panel A of Figure 2 shows that at the beginning of our data sample from 1997 to 2001, the

3-month Treasury rate maintained a relatively stable level, fluctuating between 4% and 6%.

Note that we can see a small dip toward the end of 1998, which corresponds to the Long-Term

Capital Management (LTCM) crisis. Starting from 2001, the Treasury rate entered a steady

10In our estimation, θc is not identified because it is irrelevant for interest rates and interest rate options.
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downward trend up until 2004. During this time, the Federal Reserve lowered the federal

funds rate from 6% to 1%, as investors faced high economic and financial uncertainty due

to the 2001 recession, the September 11 attacks, and the Afghanistan War. This period of

expansionary monetary policy was followed by a 3-year period of contractionary monetary

policy due to a housing market bubble and high inflation, causing the Treasury rate to

gradually increase. From 2007, the Treasury rate began to rapidly decline again when the

economy was hit by the subprime mortgage crisis, and eventually reached a level close to

zero. Since then, the Treasury rate maintained a very low level until the Federal Reserve

started raising interest rates in 2015.

The 3-month interbank rate in Panel B of Figure 2 also exhibits a similar time series

pattern in general compared to the 3-month Treasury rate, although its magnitude is slightly

larger. However, a distinctive pattern is observed around September 2008 when Lehman

Brothers filed for bankruptcy. In contrast to the Treasury rate, the interbank rate sharply

increased, reflecting a serious risk of a potential systemic meltdown in financial markets.

This event is more noticeable from the time series of the TED spread in Panel C of

Figure 2. While the TED spread stayed at a high level between 2007 and 2009 during the

Great Recession period, an exceptionally high value of over 3% was seen in September 2008.

Also of note is the early part of the sample between 1997 and 2000. Not only was the TED

spread relatively high, it significantly fluctuated with a cluster of small peaks due to the

events surrounding the 1997 Asian financial crisis, the 1998 Russian moratorium, the LTCM

crisis, and the dot-com bubble burst.

From these three panels of Figure 2, we find that our model is able to account for these

patterns of the Treasury rates and interbank rates as well as their differences. The dashed

red lines that represent the model-implied time series closely resemble the solid blue lines

that represent the data time series, peaking and dipping around the same points in time.
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This is the case for longer-maturity interest rates as well: in Figure 3, we find that the

model-implied Treasury rates and interbank rates with 2-, 5-, and 10-year maturities mimic

their data counterparts fairly well. Granted, the fit is not perfect. For instance, although our

model matches the low-frequency trend of the 10-year Treasury rates and interbank rates

relatively well, it does not capture some of their high-frequency short-run fluctuations, as

can be seen in Panels C and F of Figure 3. Instead of adding more factors to improve the fit,

we choose to keep our model simple and parsimonious, as our goal is to extract time-varying

disaster risk, not to fit interest rates.

We now turn to caps and swaptions. Panels A, B, and C of Figure 4 present the time

series of the Black-implied volatilities for the 2-, 5-, and 10-year caps, and Panels D, E, and

F present those for the 2-into-3, 1-into-4, and 5-into-5 swaptions. In each panel, the solid

blue line denotes the data, and the dashed red line denotes the model.

Before discussing the model outcomes, we point out that interpreting the magnitude and

the time series variation of Black-implied volatilities in the data is not straightforward. For

example, the Black-implied volatilities for the 2-year cap are generally much higher than

those for the 5-year or 10-year cap. Why is this the case? Furthermore, in all of the panels

in Figure 4, the Black-implied volatilities between 2010 and 2016 are exceptionally high even

compared to the Great Recession period between 2007 and 2009.

Why do the time series and cross sectional patterns of Black-implied volatilities seem

odd? The reason is that the Black formulas for caps and swaptions are derived under the

assumption that a forward interest rate follows a log-normal distribution. That is, implied

volatilities for caps and swaptions, converted from their market prices through the Black

formulas, represent yield volatilities, not bond price volatilities. Hence, the level of Black-

implied volatilities simply tends to be higher when the level of forward interest rates is

lower. This explains why Black-implied volatilities in the data turn out to be so high in
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the post Great Recession period, despite relatively lower uncertainty in the market: a 1%

expected movement in a yield corresponds to 20% yield volatility if the yield is currently at

5%, whereas it corresponds to 100% if the yield is at 1%.

To illustrate the distinction between yield volatilities versus equivalent bond volatilities,

Figure 5 juxtaposes the 1-month-into-10-year swaption-implied volatility (solid blue lines)

with the TYVIX (dotted green lines), which measures the risk-neutral expectation of future

1-month volatility of 10-year Treasury note futures. In Panel A, we can see that these

two quantities look completely different in terms of their levels and their patterns. This is

because the swaption implied volatility is a yield volatility, whereas the TYVIX is a bond

price volatility; in a sense, Panel A compares apples to oranges.

In order to compare apples to apples, we convert the Black-implied volatility into the

equivalent price volatility of a 10-year zero-coupon bond starting a month from today. This

is simply done using the following relation between yield volatility and its equivalent bond

volatility under the lognormality of the Black model:

σprice = τ × y × σyield,

where, with a slight abuse of notation, τ is the maturity of the bond, and y is the given yield.

In other words, by setting τ to be 10 years and y to be the forward interest rate between 1

month and 1 month plus 10 years, we obtain the forward-starting bond price volatility that

corresponds to the 1-month-into-10-year swaption. In Panel B of Figure 5, we discover that

the resulting time series of the equivalent bond price volatility is finally comparable to that

of the TYVIX. Not only are their levels very similar, but their time series patterns closely

resemble each other. Note that the swaption-equivalent bond price volatility is slightly

higher than the TYVIX every single point in time. This is straightforward because the

former is additionally affected by the systemic risk in the interbank lending market (i.e.
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banking disasters). Consistently, the gap in their levels substantially widens during the

Great Recession.

In sum, we conclude that it is more intuitive to compare the data and the model in terms

of bond price volatilities rather than Black-implied volatilities. Figure 6 converts the Black-

implied volatilities in the data and in the model into their equivalent forward-starting bond

price volatilities. The Black-implied volatility for the T -maturity cap is converted into the

price volatility of a bond that corresponds to its last caplet: a 6-month zero-coupon bond

starting after (T − 0.5) years and maturing after T years from today. As described above,

the Black-implied volatility for the T -into-T̄ swaption is converted to the price volatility of

a T̄ -maturity zero-coupon bond starting T years from today.

Figure 6 shows that our model’s fit to the data is not perfect. While the fit to short-

maturity caps and short-tenor swaptions (Panels A, B, D, and E) is reasonably good, the

model greatly exaggerates the fluctuations of longer-maturity caps and longer-tenor swap-

tions compared to the data (Panels C and F). It is not surprising that our model is not able

to well match every cap or swaption. Prior studies document that it is challenging to jointly

account for the pricing of caps and swaptions in crisis periods, even with a flexible statistical

model featuring several latent processes (Longstaff, Santa-Clara, and Schwartz, 2001; Han,

2007; Trolle and Schwartz, 2009). We want to reiterate that our objective is not to fit the

data perfectly. Rather, we attempt to characterize time-varying disaster risk by exploiting

the information contained in caps and swaptions, whose payoffs depend on future interbank

rates. For our purposes, we believe that our simple economic model does a reasonably good

job in capturing the data overall.
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5.3 Characterizing Time-Varying Disaster Risk

Our estimation procedure enables us to characterize the time variation in disaster risk via

the extended Kalman filter. Figure 7 displays the filtered time series of the short-run disaster

risk component λt (solid blue line) and the long-run disaster risk component ξt (dashed red

line).

From the figure, it is clear that the instantaneous disaster risk λt is much more volatile

than its time-varying mean ξt. Since λt is highly persistent, it sometimes significantly de-

viates from its mean value of 2.39% for extended periods of time. At the beginning of our

sample, we can observe a few spikes around the LTCM crisis and the dot-com bubble burst,

at which λt rose beyond 3%. While the instantaneous disaster risk hovered around a low

level of 1% between 2002 and 2006, it abruptly increased to an extremely high level at the

onset of the subprime mortgage crisis in 2007. During the subsequent 2-year period of severe

economic downturns and financial market turmoil, λt jumped to a level above 5%. Specifi-

cally, when Lehman Brothers declared bankruptcy in September 2008, λt reached its highest

value, exceeding 10%. After the crisis, the level of λt came back to a normal level, but we

still can see some small peaks that are associated with economic and financial uncertainty,

like in the European sovereign debt crisis.

While λt captures a fast-moving component of disaster risk, ξt captures a slow-moving

component. The filtered time series in Figure 7 reveal that ξt is much less volatile than λt

and moves slowly without deviating too much from its mean value. Moreover, we observe

that ξt is far more persistent than λt: once it is hit by a large positive shock, it takes a long

time for it to mean-revert back to its previous level. For instance, the level of ξt was still

high during the post Great Recession period. This is in sharp contrast with the behavior of

λt, whose level quickly dropped even before the crisis was over.

Which aspect of the data makes it possible for us to characterize the time variation in
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λt and ξt, as discussed above? To understand how time-varying disaster risk is identified

through our model, we conduct a sensitivity analysis. Figure 8 shows how TED spreads

(Panel A) and Black-implied volatilities for caps (Panel B) and swaptions (Panel C) change

when we vary λt or ξt from the 10th percentile to the 90th percentile of its filtered values.

In each panel, the solid blue lines describe the sensitivity with respect to λt while fixing ξt

at the median, whereas the dashed red lines describe the sensitivity with respect to ξt while

fixing λt at the median. Expected inflation qt is set at its median value in both cases. Lastly,

the black dot in the middle of each bar graph represents a model value when λt and ξt are

both at their median values.

Panel A of Figure 8 reveals that the short-run component of disaster risk λt is mainly

identified by TED spreads. While TED spreads increase with both λt and ξ, they are much

more sensitive to λt. For example, the 3-month TED spread moves substantially, ranging

from 0.2% to 0.8%, when λt varies between the 10% and 90% percentiles. In contrast, the

3-month TED spreads barely change with respect to ξt, as can be seen in the panel.

These results are intuitive. The 3-month interbank rate is higher than the 3-month

Treasury yield because it is further influenced by the risk of a banking disaster happening

over a 3-month horizon. Therefore, their gap, the 3-month TED spread, is mostly sensitive

to the short-run component of disaster risk. For the same reason, ξt plays a more noticeable

role if a longer horizon is considered: from the panel, we find that the longest TED spread

with a 12-month maturity is more responsive to changes in ξt, compared to the 3-month TED

spread. However, the magnitude of the effect of ξt is still minuscule across all maturities,

relative to the effect of λt. This confirms that the time series of TED spreads are the major

channel through which the time variation of λt is identified.

Although the long-run component of disaster risk ξt has little impact on TED spreads,

it has a large impact on interbank rate options. In Panels B and C of Figure 8, we dis-
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cover completely opposite patterns. The Black-implied volatilities in both panels are highly

sensitive to changes in ξt, whereas they are relatively less sensitive to changes in λt. Note

that the payoffs of caps and swaptions depend on future interbank rates over a long horizon

ranging from 1 to 10 years. Hence, the pricing data on caps and swaptions play a critical

role in characterizing the time variation of ξt.

In sum, our analysis demonstrates that both the short-run and long-run components of

disaster risk are well identified using the data on interbank rates and their options. As

discussed in Section 2.1, TED spreads do not depend on any risk factors orthogonal to

disaster risk and, thus, are highly informative about disaster risk, especially with respect to

its short-run component. Furthermore, caps and swaptions are long-term option contracts

on future interbank rates, which are pivotal in estimating the long-run component of disaster

risk. The benefit of using interbank rate options is not limited to identifying the long-run

component: the forward-looking information from caps and swaptions helps us accurately

estimate not only the level but also the overall dynamics of disaster risk.

5.4 Implications for the Equity Market

Rare disaster models are often criticized as a macro-finance model with “dark matter.” In

order to explain the high equity premium and volatility in the postwar period, these models

need to rely on the possibility of extremely bad events and its substantial time variation.

However, it is not possible to measure disaster risk directly from the data, nor statistically

test it with meaningful power, due to the rare nature of such events.

This dark matter criticism raises some concerns about how disaster risk models are cali-

brated: in typical variable disaster risk models, the dynamics of disaster risk are calibrated

to match some key stock market moments, such as the equity premium and the market

volatility. However, Chen, Dou, and Kogan (2019) point out that a model with economic
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dark matter is likely to be fragile due to the lack of internal refutability and poor out-of-

sample performance. Addressing this criticism is challenging: as discussed by Cochrane

(2017), it requires either independently anchoring time-varying disaster risk to some data or

reconciling multiple asset classes under one consistent assumption about disaster risk.

Our analysis highlights that the interbank market can potentially be useful for addressing

the dark matter criticism. We make a plausible assumption that consumption disasters

coincide with banking disasters. This identification assumption makes it possible to extract

time-varying disaster risk that is manifested in TED spreads as well as caps and swaptions.

Since our estimation does not depend on equity market moments, our estimation results

essentially serve as an external validity test of disaster risk models for the equity market.

The parameter estimates from Section 5.1 suggest that the estimated disaster dynamics are

fairly close to those implied by the calibration of Seo and Wachter (2018). Overall, our

finding that disaster risk is significant in size and in variation strongly supports a disaster-

based explanation of various asset pricing puzzles (Gabaix, 2012; Gourio, 2012; Wachter,

2013).

An additional advantage of our approach is that we obtain the past time series of the

short-run and long-run components of disaster risk, namely λt and ξt. These time series

provide an extra basis for testing the implications of disaster risk for the equity market. First

of all, Panel A of Table 2 considers the following conditional moments that are associated with

the equity market: the price-dividend ratio (log P/D), price-earnings ratio (log P/E), implied

variance (IV), expected realized variance (ERV), and variance risk premium (VRP).11 Since

these conditional moments are functions of disaster risk in variable disaster risk models, one

testable implication is that their time series variations should be explained by disaster-related

state variables.

11The price-dividend and price-earnings ratios are downloaded from Robert Shiller’s website. The three
variance-related variables are downloaded from Hao Zhou’s website.
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Hence, we regress the five conditional equity market moments on λt and ξt. We stan-

dardize both independent and dependent variables in our regressions to facilitate the inter-

pretation of slope coefficients. In columns (1) and (2) of Panel A, we document that the

valuation ratios fall when λt and ξt rise. For instance, a one standard deviation increase in

λt leads to a 0.41 standard deviation drop in the log price-dividend ratio. A one standard

deviation increase in ξt leads to a 0.71 standard deviation drop in the log price-dividend

ratio. These negative relations are statistically significant with high Newey and West (1987)

t-statistics.12 These results are consistent with economic intuition as well as empirical evi-

dence: stock market valuations are low in bad economic times with high disaster risk.

In columns (3), (4), and (5), we examine the relation between disaster risk and each of the

three variance-related variables. Note that the implied variance and the expected realized

variance measure the risk-neutral and physical expectations of future 1-month stock market

variance, respectively. The variance risk premium, calculated as their difference, captures

compensation for taking variance risk over a 1-month horizon. We expect positive relations

from our regression because higher disaster risk results in higher variance risk as well as higher

compensation for variance risk. In line with this, we find a strong positive relation between

the short-run component of disaster risk λt and each variance-related variable. However, we

find that the impact of the long-run component ξt is insignificant. This is not surprising,

since the variance-related variables are based on a very short horizon, namely, a month.

Panel B of Table 2 considers out-of-the money put option prices as additional conditional

moments, since they are particularly informative about tail events. At each point in time, we

obtain the prices of S&P 500 put options with 90% moneyness, normalized by the underlying

index price.13 This normalization allows us to compare option prices at different points in

12Since the sample size is 252, we choose the number of lags to be 0.75 3
√

252 ' 5, following Newey and
West (1994).

13We download options data from OptionMetrics. Since we do not observe options with fixed moneyness
nor a constant maturity everyday, we use a regression-based interpolation of implied volatilities with respect
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time by removing the effect of the index level. Columns (1)-(5) report the results from

regressing the normalized prices of put options with 1-, 3-, 6-, 9-, and 12-month maturities

on the time series of λt and ξt.

Column (1) of Panel B demonstrates that λt significantly and positively explains the 1-

month put option price while ξt has no statistically significant impact. This is consistent with

the results for the 1-month ahead implied variance in Panel A. Comparing the five columns in

Panel B, we can see that λt is significant across all maturities. In the case of ξt, its economic

magnitude and statistical significance gradually increase as option maturity increases. As a

result, the effect of ξt becomes significant for maturities longer than 6 months. These results

are reasonable: the long-run component of disaster risk ξt better explains long-horizon equity

moments, such as the price-dividend ratio, the price-earnings ratio, and longer-term option

prices.

So far, we have examined whether disaster risk can explain the variations in conditional

equity market moments. Another testable implication of disaster risk for the equity market

is that equity returns should be negatively associated with shocks to λt and ξt. Panel A of

Table 3 reports the results from regressing the market, size, value, momentum, and liquidity

factors on changes in λt and ξt.
14 We find that changes in both the short-run and long-run

components of disaster risk are indeed negatively related to the market, size, and liquidity

factors. This implies that λt and ξt capture more than just aggregate market risk. We do

not discover any significant results for the value and momentum factors.

Lastly, Panel B of Table 3 investigates how shocks to disaster risk affect contemporaneous

excess returns on the Fama-French 10 industry portfolios. Intuitively, some industries are

to moneyness and maturity by adopting the methodology of Seo and Wachter (2019). The price of an option
with a specific moneyness and a specific maturity is, then, calculated by plugging the interpolated implied
volatility into the Black-Scholes formula.

14The market, size, and value factors follow Fama and French (1993), and the momentum factor follows
Fama and French (2012). These time series are downloaded from Kenneth French’s website. The liquidity
risk factor follows Pastor and Stambaugh (2003) and is download from Robert Stambaugh’s website.
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less sensitive to disaster risk than others. For example, industries that focus on consumer

staples, such as food, utilities, energy, and healthcare are likely to be less exposed to disaster

risk. This intuition is confirmed in Panel B: the relations between changes in disaster risk

and industry returns are statistically insignificant for industries including consumer non-

durables, energy, healthcare, and utilities (columns (6)-(9)). In contrast, for industries that

are more business-cycle sensitive, such as consumer durables, manufacturing, business equip-

ment, telecommunication, and retail (columns (1)-(5)), we obtain highly significant negative

relations.

6 Conclusion

While prior studies on rare disasters calibrate time-varying disaster risk, accurately charac-

terizing it from data remains a considerable challenge. This is extremely difficult because

disasters are nearly unobservable events in the post-war sample. In order to tackle this is-

sue, our paper ties time-varying probabilities of disasters to an independent source of data:

interbank rates and their options.

Our identification approach relies on the assumption that macroeconomic disasters co-

incide with banking disasters. This link between banking disasters and the macroeconomy

allows us to derive the model-implied TED spreads and prices on interbank rate options as

functions of the short-run and long-run components of disaster risk. We show that these

data are particularly sensitive to disaster risk, which enables us to reliably infer not only the

level of time-varying disaster probabilities but also their dynamics.

The estimation results suggest that disaster risk is significant in size and in variation,

strongly upholding the validity of macro-finance models with the rare disaster mechanism.

Using the filtered time series of the short-run and long-run components of disaster risk, we

also confirm that the implications of these models for equity moments and equity returns
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are consistent with the empirical evidence. Put together, we conclude that disaster risk has

important implications for the equity market.

In our model, we simply assume that when the interbank market is hit by a large infre-

quent Poisson shock, the consumption process is also hit by the same shock. This parsimo-

nious setup is sufficient for our estimation and empirical analysis. However, our framework

is silent about how macroeconomic and banking disasters arise and how they interact, as we

do not model the behaviors of banks nor the structure of the interbank market. We leave

this for future work.
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Appendix

A Model Derivations

A.1 Risk-Neutral Dynamics

Given the assumption about the pricing kernel in equation (5), the Brownian shocks under

the risk-neutral measure are written as follows:

dBQ
c,t = dBc,t − θcdt,

dBQ
λ,t = dBλ,t − θλ

√
λtdt,

dBQ
ξ,t = dBξ,t − θξ

√
ξtdt,

dBQ
q,t = dBq,t − θqdt,

where θc, θλ, θξ, and θq indicate the market prices of risk. Moreover, under the risk-neutral

measure, the disaster intensity and the moment generating function (MGF) of the jump size

distributions are represented as:

λQt = λtΦZ(θN , 0),

EQ
[
eu1Zc+u2Zq

]
=

ΦZ(u1 + θN , u2)

ΦZ(θN , 0)
,

where ΦZ(u1, u2) = E
[
eu1Zc+u2Zq

]
is the MGF of (Zc, Zq) under the physical measure.
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This leads to the following risk-neutral dynamics of the underlying processes,

dct
ct

= µQc dt+ σcdB
Q
c,t +

(
eZc,t − 1

)
dNt,

dλt = κQλ (νξt − λt)dt+ σλ
√
λtdB

Q
λ,t,

dξt = κQξ (ξ̄Q − ξt)dt+ σξ
√
ξtdB

Q
ξ,t,

dqt = κQq (q̄Q − qt)dt+ σqdB
Q
q,t + Zq,tdNt,

where µQc = µc + θcσc, κ
Q
λ = κλ − σλθλ, ν = κλ

κQλ
, κQξ = κξ − σξθξ, ξ̄Q =

κξ ξ̄

κQξ
, κQq = κq, and

q̄Q = κq q̄+θqσq

κQq
.

A.2 Zero-Coupon Rates on Interbank Lending and Government Bonds

The time-t value of $1 zero-coupon interbank lending maturing at time t+ τ is written as:

Pi(t, t+ τ) = EQt
[
e−

∫ t+τ
t rudu

Lt+τ
Lt

]
.

By multiplying both sides of the above equation with e−
∫ t
0 ruduLt, we obtain the following

martingale:

e−
∫ t
0 ruduPi(t, t+ τ)Lt = EQt

[
e−

∫ t+τ
0 ruduLt+τ

]
.

We conjecture that the price of a zero-coupon interbank lending is expressed as:

Pi(t, t+ τ) = exp(ai(τ) + bi,λ(τ)λt + bi,ξ(τ)ξt + bi,q(τ)qt).

Since
(
e−

∫ t
0 ruduPi,t(τ)Lt

)
is a martingale, the sum of the drift and the jump compensator

should be zero. This martingale property provides the system of ordinary differential equa-
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tions (ODEs) for ai, bi,λ, bi,ξ, bi,q as follows:

a′i(τ) = −δ0bi,ξ(τ)κQξ ξ̄
Q + bi,q(τ)κQq q̄

Q +
1

2
bi,q(τ)2σ2

q ,

b′i,λ(τ) = −δλ − bi,λ(τ)κQλ +
1

2
bi,λ(τ)2σ2

λ + ΦZ(1 + θN , bi,q(τ))− ΦZ(θN , 0),

b′i,ξ(τ) = −δξ + bi,λ(τ)κQλ ν − bi,ξ(τ)κQξ +
1

2
bi,ξ(τ)2σ2

ξ ,

b′i,q(τ) = −δq − bi,q(τ)κQq ,

with the initial condition: ai(0) = bi,λ(0) = bi,ξ(0) = bi,q(0) = 0.

Similarly, the price of a government bond is given as:

Pg(t, t+ τ) = EQt
[
e−

∫ t+τ
t rudu · 1

]
,

and we conjecture the price has the form of

Pg(t, t+ τ) = exp(ag(τ) + bg,λ(τ)λt + bg,ξ(τ)ξt + bg,q(τ)qt).

Since
(
e−

∫ t
0 ruduPg,t(τ)

)
is a martingale, the sum of the drift and the jump compensator

should be zero. This martingale property provides the following system of ODEs for ag, bg,λ, bg,ξ

and bg,q:

a′g(τ) = −δ0bg,ξ(τ)κQξ ξ̄
Q + bg,q(τ)κQq q̄

Q +
1

2
bg,q(τ)2σ2

q ,

b′g,λ(τ) = −δλ − bg,λ(τ)κQλ +
1

2
bg,λ(τ)2σ2

λ + ΦZ(θN , bg,q(τ))− ΦZ(θN , 0),

b′g,ξ(τ) = −δξ + bg,λ(τ)κQλ ν − bg,ξ(τ)κQξ +
1

2
bg,ξ(τ)2σ2

ξ ,

b′g,q(τ) = −δq − bg,q(τ)κQq ,

with the initial conditions: ag(0) = bg,λ(0) = bg,ξ(0) = bg,q(0) = 0.
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Note that bi,q(τ) and bg,q(τ) are identical, as their ODEs are identical with the same

initial condition. Therefore, we simply denote them as bq(τ).

A.3 Cap and Swaption Pricing

Before deriving the expressions for the prices of caps and swaptions, we first find the pricing

formula for a put option on Pi(T0, T1) with a strike price K. Following Duffie, Pan, and

Singleton (2000), Collin-Dufresne and Goldstein (2003), and Trolle and Schwartz (2009), we

compute the put option price by using the transform analysis:

P(t, T0, T1, K) = EQt
[
e−

∫ T0
t rsds(K − Pi(T0, T1))1{Pi(T0,T1)<K}

]
= KG0,1(logK)−G1,1(logK),

where

Ga,b(y) =
ψ(a, t, T0, T1)

2
− 1

π

∫ ∞
0

Im [ψ(a+ iub, t, T0, T1)e−iuy]

u
du,

ψ(u, t, T0, T1) = EQt
[
exp

(
−
∫ T0

t

rsds

)
eu log(Pi(T0,T1))

]
.

Note that ψ(·) solves the complex-valued ODEs of Duffie, Pan, and Singleton (2000), and

Im(·) represents the imaginary part of a complex number.

The time-t cap price is given by equation (12). Under the approximation e
−

∫ tj+1
tj

rsds ≈

Pi(tj, tj+1), we re-express the cap pricing formula as:

V (T )
cap (t,Kc) ≈

mT∑
j=1

EQt

[
exp

(
−
∫ tj

t

rsds

)
Pi(tj, tj+1)

[
1

Pi(tj, tj+1)
− 1−∆×Kc

]+
]

= (1 + ∆×Kc)

mT∑
j=1

P
(
t, tj, tj+1,

1

1 + ∆×Kc

)
. (A.1)
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As discussed in Section 2.3, we price swaptions by adopting the stochastic duration

method suggested by Wei (1997), Munk (1999), and Trolle and Schwartz (2009). Applying

this method to equation (14) results in:

V (T,T̄ )
pay (t,Ks) = EQt

[
exp

(
−
∫ t+T

t

rsds

)[
1− V (T̄ )

fixed(t+ T,Ks)

]+
]

≈ ζP(t, T, t+D(t, T, T̄ ), ζ−1), (A.2)

where ζ =
∑T̄ /∆
l=1 YlPi(t,t+T+l∆)

Pi(t,t+D(t,T,T̄ ))
. The stochastic duration D(t, T, T̄ ), or simply D(t), is defined

as a quantity that satisfies:

bi,λ(D(t))2σ2
λλt+bi,ξ(D(t))2σ2

ξξt+bq(D(t))2σ2
q+[Φ(θN , 2bq(D(t)))− 2Φ(θN , bq(D(t))) + Φ(θN , 0)]λt

=

T̄ /∆∑
j=1

wjbi,λ(T + j∆)

2

σ2
λλt +

T̄ /∆∑
j=1

wjbi,ξ(T + j∆)

2

σ2
ξξt +

T̄ /∆∑
j=1

wjbq(T + j∆)

2

σ2
q

+

T̄ /∆∑
j=1

[
w2
jΦ(θN , 2bq(T + j∆))− 2wjΦ(θN , bq(T + j∆))

+
∑
k>j

2wjwkΦ(θN , bq(T + j∆) + bq(T + k∆))

]
+ Φ(θN , 0)

λt, (A.3)

where wj =
YjPi(t,t+T+j∆)∑T̄ /∆
l=1 YlPi(t,t+T+l∆)

, Yj = ∆×Ks for j = 1, 2, · · · , T̄
∆
−1, and YT̄ /∆ = 1+∆×Ks.

B The Extended Kalman Filter

As discussed in Section 4, we derive the discrete-time state equation based on the exact

relation between St = [λt, ξt]
> and St−∆t = [λt−∆t, ξt−∆t]

>. To do so, we first integrate both
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sides of the stochastic differential equations for λt and ξt from time t−∆t to time t:

λt = λt−∆t + κλ

∫ t

t−∆t

(ξu − λu)du+ σλ

∫ t

t−∆t

√
λudBλ,u,

ξt = ξt−∆t + κξ

∫ t

t−∆t

(ξ̄ − ξu)du+ σξ

∫ t

t−∆t

√
ξudBξ,u.

Note that an Ito integral is a martingale and, hence, its conditional mean is zero. By

taking the conditional expectations Et−∆t[·] on both sides of the equations, we simply obtain

Et−∆t [St] = η + ΨSt−∆t, where

η =

 − κλξ̄
κλ−κξ

(
e−κξ∆t − e−κλ∆t

)
+ ξ̄

(
1− e−κλ∆t

)
ξ̄
(
1− e−κξ∆t

)
 ,

Ψ =

 e−κλ∆t κλ
κλ−κξ

(
e−κξ∆t − e−κλ∆t

)
0 e−κξ∆t

 .
This relation allows us to express St as in equation (16):

St = Et−∆t[St] + εt, where Et−∆t[εt] = 0 and Vart−∆t[εt] = Ωt−∆t,

where the 2× 2 covariance matrix Ωt−∆t is given by

Ωt−∆t =

 Ωλλ,t−∆t Ωλξ,t−∆t

Ωλξ,t−∆t Ωξξ,t−∆t

 .
Clearly, εt is non-normal. However, in order to use a conventional filtering approach, we

approximate it by a mean-zero normal random variable with the same covariance matrix

Ωt−∆t.
15 We find each element of Ωt−∆t by considering the marginal and joint dynamics of

15As discussed in Section 4, it is well known that the effect of this approximation is minimal.
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λt and ξt:

Ωλλ,t−∆t =
κ2
λσ

2
ξξt−∆t

(κλ − κξ)2κξ

(
e−κξ∆t − e−2κξ∆t

)
+

κ2
λξ̄σ

2
ξ

2(κλ − κξ)2κξ

(
1− e−κξ∆t

)2

−
2κλσ

2
ξ (ξt−∆t − ξ̄)

(κλ − κξ)2

(
e−κξ∆t − e−(κλ+κξ)∆t

)
−

2κ2
λσ

2
ξ ξ̄

(κλ − κξ)2(κξ + κλ)

(
1− e−(κλ+κξ)∆t

)
+

κ2
λσ

2
ξ (ξt−∆t − ξ̄)

(κλ − κξ)2(2κλ − κξ)
(
e−κξ∆t − e−2κλ∆t

)
+

κλσ
2
ξ ξ̄

2(κλ − κξ)2

(
1− e−2κλ∆t

)
+

(λt−∆t − ξ̄)σ2
λ

κλ

(
e−κλ∆t − e−2κλ∆t

)
+

κλ(ξt−∆t − ξ̄)σ2
λ

(κλ − κξ)(2κλ − κξ)
(
e−κξ∆t − e−2κλ∆t

)
− (ξt−∆t − ξ̄)σ2

λ

κλ − κξ
(
e−κλ∆t − e−2κλ∆t

)
+
ξ̄σ2

λ

2κλ

(
1− e−2κλ∆t

)
,

Ωξξ,t−∆t =
σ2
ξξt−∆t

κξ

(
e−κξ∆t − e−2κξ∆t

)
+
σ2
ξ ξ̄

2κξ

(
1− e−κξ∆t

)2
,

Ωλξ,t−∆t =
κλ

κλ − κξ
Ωξξ,t−∆t

−
σ2
ξ

(
ξt−∆t − ξ̄

)
κλ − κξ

(
e−κξ∆t − e−(κλ+κξ)∆t

)
−

κλσ
2
ξ ξ̄

(κλ − κξ)(κλ + κξ)

(
1− e−(κξ+κλ)∆t

)
.

Since our measurement equation is not linear in the state variables, we adopt the extended

Kalman filter. Specifically, we locally linearize the function h(S, q) in equation (17) as follows:

h(St, qt) ≈ h
(
Ŝt|t−∆t, qt

)
+Ht ×

(
St − Ŝt|t−∆t

)
,

where Ŝt|t−∆t is the predicted time-t state vector given the information at time t−∆t, and

Ht = ∂h
∂S

(
Ŝt|t−∆t, qt

)
is the partial derivative of h(S, q) with respect to S, evaluated at the

point (Ŝt|t−∆t, qt).

Then, according to the Kalman filter recursion, we obtain the filtered state vector at time
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t (i.e. Ŝt) from the filtered state vector at time t−∆t (i.e. Ŝt−∆t) as follows:

Ŝt|t−∆t = η + ΨŜt−∆t,

Pt|t−∆t = ΨPt−∆tΨ
′ + Ωt−∆t,

Ŝt = Ŝt|t−∆t +Ktêt,

Pt = Pt|t−∆t −KtHtPt|t−∆t,

where

Kt = Pt|t−∆tH
′
tF
−1
t ,

Ft = HtPt|t−∆tH
′
t +Q,

êt = Yt − h
(
Ŝt|t−∆t, qt

)
.

For the initial month, the values of Ŝt−∆t and Pt−∆t are set to be the unconditional mean

and variance of St. The Kalman filter recursion also enables us to calculate the likelihood of

observing Yt conditional on Yt−∆t:

logLt = − l
2

log(2π)− 1

2
log |Ft| −

1

2
ê′tF

−1
t êt,

where l is the size of the vector Yt.
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Table 1: Parameter Estimates

Consumption growth µc σc

0.0138 0.0081

(0.0018) (0.0005)

Expected inflation κq σq q̄

0.5072 0.0062 0.0206

(0.2773) (0.0010) (0.0028)

Disaster risk κλ σλ

0.1861 0.1423

(0.0024) (0.0010)

κξ σξ ξ̄

0.0750 0.0240 0.0239

(0.0009) (0.0004) (0.0006)

Risk-free rate δλ δξ δq δ0

-0.1679 -2.3764 0.9524 0.0602

(0.0040) (0.0325) (0.0086)

Market price of risk θλ θξ θq θN

0.1950 0.9044 2.1387 -0.1640

(0.0036) (0.0157) (0.0330) (0.0021)

Measurement errors σSP σITR σOPT

0.0014 0.0050 0.0664

(0.0000) (0.0000) (0.0008)

Notes: This table reports the values of the model parameters estimated through the extended
Kalman filter/MLE procedure. The model consists of the following four state variables: real
consumption (ct), expected inflation (qt), instantaneous disaster intensity (λt), and its long-
run component (ξt). We also report the risk-free rate factor loadings and the market prices
of risk. Lastly reported are the standard deviations of measurement errors, where subscripts
SP , ITR, and OPT indicate TED spreads, interest rates, and Black-implied volatilities,
respectively.
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Table 2: Disaster Risk and Conditional Equity Moments

Panel A: Valuation ratios and variance-related variables

(1) (2) (3) (4) (5)

log P/D log P/E IV ERV VRP

λt -0.41 -0.27 0.58 0.57 0.25

[-3.95] [-2.55] [3.25] [2.84] [1.91]

ξt -0.71 -0.75 -0.02 0.06 -0.10

[-6.81] [-7.72] [-0.25] [0.86] [-1.52]

Adj R2 (%) 60.12 58.53 34.15 32.18 7.58

Panel B: Out-of-the-money put option prices

(1) (2) (3) (4) (5)

1 month 3 months 6 months 9 months 12 months

λt 0.56 0.57 0.57 0.50 0.32

[3.14] [3.87] [4.22] [3.92] [2.93]

ξt 0.02 0.06 0.15 0.23 0.22

[0.27] [0.72] [1.66] [2.44] [2.18]

Adj R2 (%) 30.48 31.28 32.62 27.36 12.90

Notes: This table reports the results of contemporaneous time series regressions that examine
the relation between the filtered disaster risk variables (λt and ξt) and conditional equity
market moments. In both panels, we standardize the independent and dependent variables.
In Panel A, the dependent variables are the log price-dividend ratio (log P/D), log price-
earnings ratio (log P/E), implied variance (IV), expected realized variance (ERV), and the
variance risk premium (VRP). In Panel B, the dependent variables are the normalized put
prices of 90% moneyness put options with 1-, 3-, 6-, 9- and 12-month maturities. The t-
statistics are reported in brackets and are computed based on the Newey and West (1987)
method with five lags.
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Table 3: Shocks to Disaster Risk and Equity Returns

Panel A: Factor portfolios

(1) (2) (3) (4) (5)

MktRf SMB HML MOM LIQ

∆λt -0.14 -0.10 0.09 0.00 -0.18

[-2.59] [-2.08] [1.18] [0.03] [-2.17]

∆ξt -0.22 -0.13 0.00 0.10 -0.13

[-2.76] [-2.86] [-0.01] [1.25] [-1.59]

Adj R2 (%) 6.29 2.36 0.49 0.54 4.51

Panel B: Fama-French 10 industry portfolios

(1) (2) (3) (4) (5)

Durbl Manuf HiTec Telcm Shops

∆λt -0.12 -0.14 -0.13 -0.14 -0.08

[-2.49] [-2.15] [-2.65] [-2.66] [-2.08]

∆ξt -0.20 -0.20 -0.23 -0.18 -0.20

[-3.07] [-2.78] [-2.92] [-2.11] [-2.72]

Adj R2 (%) 5.00 5.49 6.53 4.98 4.01

(6) (7) (8) (9) (10)

NoDur Enrgy Hlth Utils Other

∆λt -0.04 -0.10 -0.08 -0.11 -0.08

[-0.83] [-1.64] [-1.37] [-1.51] [-1.55]

∆ξt -0.04 -0.10 -0.12 0.02 -0.20

[-0.53] [-1.47] [-1.58] [0.21] [-2.74]

Adj R2 (%) -0.09 1.53 1.57 0.88 4.37

Notes: This table reports the results of contemporaneous time series regressions that ex-
amine the relation between changes in the filtered disaster risk variables (λt and ξt) and
equity returns. In both panels, we standardize the independent and dependent variables.
In Panel A, the dependent variables are the excess market return (MktRf), size factor re-
turn (SMB), book-to-market factor return (HML), momentum factor return (MOM), and
liquidity factor return (LIQ). In Panel B, the dependent variables are the excess returns
on the 10 Fama-French industry portfolios. These industries include consumer durables
(Durbl), manufacturing (Manuf), business equipment (HiTec), telecommunication (Telcm),
retail (Shops), consumer non-durables (NoDur), energy (Enrgy), healthcare (Hlth), utilities
(Utils), and others (Other). The t-statistics are reported in brackets and are computed based
on the Newey and West (1987) method with five lags.
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Figure 1: Size Distributions of Consumption Declines and Inflation Rates During Disasters

Panel A: Consumption declines

Panel B: Inflation rates

Notes: This figure shows the empirical distribution of consumption declines (Panel A) and
the empirical distribution of inflation rates during consumption disasters (Panel B), both
obtained from the Barro and Ursúa (2008) dataset. In Panel B, we remove extreme hyper-
inflation events by excluding the observations that fall more than 3 times the interquartile
range above the third quartile. No observations fall more than 3 times the interquartile
range below the first quartile. 49



Figure 2: Interest rates and the TED spread in the Data and in the Model

Panel A: 3-month Treasury rate

Panel B: 3-month interbank rate

Panel C: 3-month TED spread

Notes: This figure plots the time series of the Treasury rate (Panel A), the interbank rate
(Panel B), and the TED spread (Panel C) with a 3-month maturity in the data and in the
model, from January 1997 to December 2017. The solid blue lines represent the data and
the dashed red lines represent the model. All values are expressed in percentage terms.
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Figure 3: Interest Rates in the Data and in the Model

Panel A: 2-year Treasury rate Panel D: 2-year interbank rate

Panel B: 5-year Treasury rate Panel E: 5-year interbank rate

Panel C: 10-year Treasury rate Panel F: 10-year interbank rate

Notes: This figure depicts the time series of the Treasury rates (Panels A, B, and C) and
the interbank rates (Panels D, E, and F) with 2-, 5-, and 10-year maturities in the data and
in the model, from January 1997 to December 2017. The solid blue lines represent the data,
and the dashed red lines represent the model. All values are expressed in percentage terms.
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Figure 4: Black-Implied Volatilities in the Data and in the Model

Panel A: 2-year cap Panel D: 2-into-3 swaption

Panel B: 5-year cap Panel E: 1-into-4 swaption

Panel C: 10-year cap Panel F: 5-into-5 swaption

Notes: This figure presents the time series of the Black-implied volatilities for the 2-, 5-, and
10-year caps (Panels A, B, and C), and those for the 2-into-3, 1-into-4, and 5-into-5 swaptions
(Panels D, E, and F) in the data and in the model, from January 1997 to December 2017.
The solid blue lines represent the data, and the dashed red lines represent the model. All
values are expressed in percentage terms.
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Figure 5: A Comparison Between the 1M-Into-10Y Swaption Volatility and the TYVIX

Panel A: Black-implied volatility vs. TYVIX

Panel B: Equivalent forward-starting bond price volatility vs. TYVIX

Notes: This figure compares the time series of the 1-month-into-10-year swaption Black-
implied volatility (Panel A) and the equivalent bond price volatility (Panel B) with the
TYVIX in the data. The swaption-implied volatilities are from January 1997 to December
2017, whereas the TYVIX is available from January 2003. The solid blue lines represent the
swaption-implied volatilities, and the dotted green lines represent the TYVIX. All values are
expressed in percentage terms.
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Figure 6: Equivalent Bond Price Volatilities in the Data and in the Model

Panel A: 2-year cap Panel D: 2-into-3 swaption

Panel B: 5-year cap Panel E: 1-into-4 swaption

Panel C: 10-year cap Panel F: 5-into-5 swaption

Notes: This figure plots the time series of the equivalent bond price volatilities for the 2-,
5-, and 10-year caps (Panels A, B, and C), and those for the 2-into-3, 1-into-4, and 5-into-5
swaptions (Panels D, E, and F) in the data and in the model, from January 1997 to December
2017. The solid blue lines represent the data, and the dashed red lines represent the model.
All values are expressed in percentage terms.
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Figure 7: Implied Time-Varying Disaster Risk

Notes: This figure displays the filtered time series of the short-run disaster risk component
λt (solid blue line) and the long-run disaster risk component ξt (dashed red line), from
January 1997 to December 2017. All values are expressed in percentage terms.
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Figure 8: Disaster Risk, TED Spreads, and Interbank Rate Option-Implied Volatilities

Panel A: Sensitivity of TED spreads

Panel B: Sensitivity of caps Panel C: Sensitivity of swaptions

Notes: This figure shows how TED spreads (Panel A) and Black-implied volatilities for caps
(Panel B) and swaptions (Panel C) change when λt or ξt varies from the 10th percentile
to the 90th percentile of its filtered values. In each panel, the solid blue lines describe the
sensitivity with respect to λt while fixing ξt at the median, whereas the dashed red lines
describe the sensitivity with respect to ξt while fixing λt at the median. Expected inflation
qt is set at its median value in both cases. The black dot in the middle of each bar graph
represents a model value when λt and ξt are both at their median values. All values are
expressed in percentage terms.
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